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1. 

Recently, an interesting study by Kukla et al. [1] was published on the problem of the
natural longitudinal vibrations of two rods coupled by many translational springs where
the Green function method was employed. Motivated by this publication, the present note
deals with a similar mechanical system. The system here is made up of two clamped-free
axially vibrating rods carrying tip masses to which a double spring-mass system is attached
as a secondary system across the span. Due to employment of a boundary value problem
formulation which, in our opinion, allows much more insight into the physical aspects,
only one secondary system is considered here.

2. 

The problem to be investigated in the present note is the natural vibration problem of
the system shown in Figure 1. It consists of two clamped-free axially vibrating rods
carrying tip masses as the primary system (ps) to which a double spring-mass secondary
system (ss) is attached across the span. The physical properties of the ps are as follows:
The length, mass per unit length, location of the spring attachment point, axial rigidity
and tip mass of the ith rod are Li , mi , hiLi , EiAi and Mi , respectively (i=1, 2). The
secondary system consists of two springs of stiffness k1, k2 and the mass M. Let one denote
the longitudinal vibration displacements of the first and second rods to the left and right
of the spring attachment points as u11(x, t), u12(x, t) and u21(x, t), u22(x, t) respectively as
depicted in Figure 1. z(t) represents the displacement of the mass M.

The equations of longitudinal motion of the four rod portions are governed by the
following partial differential equations [2].

EiAi 1
2uij (x, t)/1x2 =mi 1

2uij (x, t)/1t2 (i, j=1, 2). (1)

The corresponding boundary and continuity conditions at the spring attachment points
are as follows

u11(0, t)=0, u11(h1L1, t)= u12(h1L1, t)

E1A1u'12(h1L1, t)−E1A1u'11(h1L1, t)+ k1[z(t)− u'11(h1L1, t)]=0,

E1A1u'12(L1, t)+M1ü12(L1, t)=0,

Mz̈=−k1[z(t)− u11(h1L1, t)]+ k2[u21(h2L2, t)− z(t)],

u21(0, t)=0, u21(h2L2, t)= u22(h2L2, t),

E2A2u'22(h2L2, t)−E2A2u'21(h2L2, t)+ k2[z(t)− u21(h2L2, t)]=0,

E2A2u'22(L2, t)+M2ü22(L2, t)=0. (2)
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Here dots and primes denote partial derivatives with respect to time t and position
co-ordinate x, respectively. Using the standard method of separation of variables one
assumes,

uij (x, t)=Uij (x) cos vt (i, j=1, 2) (3)

where Uij (x, t) are the corresponding amplitude functions of the rods and v is the unknown
eigenfrequency of the combined system. Substituting these into equations (1) results in the
following ordinary differential equations.

U01j (x)+ b2U1j (x)=0, U02j (x)+ m2b2U2j (x)=0, ( j=1, 2). (4)

Here, the following abbreviations are introduced

b2 =m1v
2/E1A1, m2 = am /x, am =m2/m1, x=E2A2/E1A1. (5)

Assuming

z(t)=Z cos vt (6)

and substituting (3) and (6) in (2) yield the corresponding boundary and matching
conditions for amplitude functions Uij and Z:

U11(0)=0, U11(h1L1)=U12(h1L1),

E1A1U'12(h1L1)−E1A1U'11(h1L1)+ k1[Z−U'11(h1L1)]=0,

E1A1U'12(L1)−M1v
2U12(L1)=0,

Mv2Z− k1[Z−U11(h1L1)]+ k2[U21(h2L2)−Z]=0,

U21(0)=0, U21(h2L2)=U22(h2L2),

E2A2U'22(h2L2)−E2A2U'21(h2 L2, t)+ k2[Z−U21(h2L2)]=0,

E2A2U'22(L2)−M2v
2U22(L2)=0. (7)

The general solutions of the ordinary differential equations (4) are simply

U1j (x)=C1j sin bx+C2j cos bx, U2j (x)=C3j sin mbx+C4j cos mbx, ( j=1, 2) (8)

where C1j–C4j are eight integration constants to be evaluated via conditions (7). The
application of these boundary and matching conditions to the solutions (8) and the
amplitude Z yields a set of nine homogeneous equations for the nine unknown constants
C1j–C4j ( j=1, 2) and Z. A non-trivial solution of this set of equations is possible only if
the characteristic determinant of the coefficients vanishes. Taking into account that C21 and
C41 vanish, the characteristic equation reduces to the following form
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Figure 1. Two clamped-free rods with tip masses to which a double spring-mass system is attached in span.

Here, in addition to those given in (5), the following definitions are introduced:

b�= bL1, aM =M/m1L1, aM1 =M1/m1L1, aM2 =M2/m2L2

ak = k2/k1, ak1 = k1/(E1A1/L1), ak2 = k2/(E2A2/L2),

d= mL2/L1, c= dh2. (10)

It is worth noting that b� represents the dimensionless frequency parameter of the combined
system.

3.   

The complicated frequency equation (9) was solved by using MATHEMATICA version
2.0 for MS-DOS on a PC 386. Because there are many system parameters which can be
varied, it is meaningless to tabulate the b� values so obtained for various combinations of
the many parameters. Instead, results for three examples are given in graphical form.

The results for the eigenfrequency parameters obtained with the present double
spring-mass system are compared with the results of Kukla’s study. For
aM = aM1 = aM2 =0, h1 =0·5, h2 =0·6, d=0·66, L1 =L2 =1m, ak1 =5, ak =a, frequency
parameters of the present system are b�1 =1·32684, b�2 =2·322563, b�3 =3·197436,
b�4 =4·838520. Comparison of the results shows a very close agreement.

In all numerical evaluations made below, the values of some of the physical parameters
were chosen as follows: aL =L2/L1 =1, am =1, aM1 = aM1 =2, ak1 =1, x=1. These yield
m= d=1.

The first example aims to explore the effect of the variation of the location of the spring
attachment point to the first rod on the natural frequencies of the combined system where
spring stiffness ratio ak = k2/k1 is taken as a parameter. Tip mass ratio and spring
attachment point on the second rod are chosen as aM =M/m1L1 =1 and h2 =0·5
respectively. The results obtained are shown in Figure 2. Common to all curves in Figure 2
(except (d)) is that for a fixed value of h1, an increase of the parameter ak gives rise to an
increase of the eigenfrequencies of the combined system shown in Figure 1. As h1 gets
larger, i.e., the spring attachment point on the first rod approaches the tip of the rod, the
fundamental frequency parameter diminishes slightly, whereas the second one increases.
The other eigenfrequencies remain practically unaffected although the fourth
eigenfrequency reveals a symmetric variation in a narrow band.
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The second example investigates the effect of the variation of the spring attachment
point to the second rod where the stiffness ratio ak = k2/k1 is taken as a parameter again,
aM =M/m1L1 =1 and h1 =0·5 are chosen. An inspection of the curves in Figure 3
indicates that in general, for a fixed value of h2, an increase of ak gives rise to an increase
of the eigenfrequencies. However, the first and the fifth eigenfrequency curves reveal, in
an interesting manner, some intersections after which the opposite behaviour is observed.
In order to avoid misunderstanding during the comparison of Figures 2 and 3, it is worth
noting that once ak and one of ak1 and ak2 are chosen, the value of the other parameter
is fixed according to ak2 = (akaL /x)ak1.

The next example deals with the effect of the variation of the mass M of the secondary
system on the eigenfrequencies of the combined system. ak =1 and h1 = h2 =0·5 are
chosen. The mass parameter aM =M/m1L is varied in the range 0–20. The results are

Figure 2. The first five dimensionless frequency parameters of the system shown in Figure 1 as a function of
h1. (aM1 = aM2 =2, aM =1, ak1 =1, h2 =0·5: — · · —, ak =0·1; ——, ak=1; – – –, ak =10). (a) b�1; (b) b�2; (c) b�3;
(d) b�4; (e) b�5.
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Figure 3. The first five dimensionless frequency parameters of the system shown in Figure 1 as a function of
h2 (aM1 = aM2 =2, aM =1, ak1 =1, h1 =0·5: — · · —, ak =0·1; ——; ak=1; – – –, ak =10). (a) b�1; (b) b�2; (c) b�3;
(d) b�4; (e) b�5.

shown in Figure 4. The fundamental eigenfrequency diminishes continuously as aM gets
larger whereas the second eigenfrequency is practically unaffected. After a rapid decrease
in the beginning, the third and fifth eigenfrequencies remain practically constant over the
whole range considered. The same tendency is observed also for the fourth eigenfrequency
where the decrease in the beginning is not so pronounced.

The last example deals with the effect of the variation of the tip masses on the
eigenfrequencies of the combined system, where aM1 = aM2 is taken for the sake of
simplicity, ak = ak1 = aM =1 and h1 = h2 =0·5 are chosen. The results are shown in
Figure 5. The curves indicate clearly that the eigenfrequencies of the system decrease as
the tip masses get larger.

Up to now, the effect of the variation of the stiffness and mass parameters of the
secondary system on the eigenfrequencies of the combined system have been discussed.
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This determines how the existence of the secondary system affects the frequency spectrum
of the system. It is in order to report briefly one’s observation on this matter. Consider
the special case where the primary system consists of two entirely equal rods with equal
tip masses M* in which case the frequency equation is given by [3]

a*Mb�* sin b�*−cos b�*=0. (11)

If one takes as an example a*M =M*/m1L1 =2, the first four eigenfrequency parameters
are determined as b�*1 =0·65327, b�*2 =3·29231, b�*3 =6·36162, b�*4 =9·47746 where the
asterisks denote the primary system parameters.

For the choice E1 =E2 =E=2·1×1011 N/m2, A1 =A2 =A=4×10−4 m2,
L1 =L2 =L=1m, m1 =m2 =m=3·12 kg/m2 the eigenfrequency of the secondary system

Figure 4. Effect of the variation of the mass M of the secondary system on the dimensionless frequency
parameters of the system shown in Figure 1 (aM1 = aM2 =2, ak = ak1 =1, h1 = h2 =0·5): (a) b�1; (b) b�2; (c) b�3; (s)
b�4; (e) b�5.
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Figure 5. Effect of the variation of the masses M1 and M2 on the dimensionless frequency parameters of the
system shown in Figure 1. (aM = ak = ak1 =1, h1 = h2 =0·5): (a) b�1; (b) b�2; (c) b�3.

(vs =z(k1 + k2)/m) is between the first and second eigenfrequency of the primary system
(eigenfrequencies of the primary system (vi = b�izEA/mL2).). Upon the attachment of the
secondary system, the first eigenfrequency parameter of the combined system is lower than
that of the primary system and there are two eigenfrequency parameters between the first
and second; second and third eigenfrequency parameters of the primary system.

4. 

The subject of this note is the longitudinal vibration problem of a system consisting of
two clamped-free rods carrying tip masses, coupled by a double spring-mass system
attached to them in span. After formulating the frequency equation of the system, the
effects of the variation of some system parameters upon the natural frequencies were
investigated through numerical examples.
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